skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farah, Luiz Gustavo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less
  2. We study the focusing NLS equation in $$R\mathbb{R}^N$$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $$\mathcal{ME}(u_0)=\mathcal{ME}(Q)$$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $$Q^\pm$$, besides the standing wave $$e^{it}Q$$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations. 
    more » « less